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NUMERICAL ALGORITHMS FOR SEMILINEAR PARABOLIC 
EQUATIONS WITH SMALL PARAMETER BASED ON 

APPROXIMATION OF STOCHASTIC EQUATIONS 

G. N. MILSTEIN AND M. V. TRETYAKOV 

ABSTRACT. The probabilistic approach is used for constructing special layer 
methods to solve the Cauchy problem for semilinear parabolic equations with 
small parameter. Despite their probabilistic nature these methods are nev- 
ertheless deterministic. The algorithms are tested by simulating the Burgers 
equation with small viscosity and the generalized KPP-equation with a small 
parameter. 

1. INTRODUCTION 

Nonlinear partial differential equations (nonlinear PDE) usually are not sus- 
ceptible of analytic solution, and are mostly investigated by numerical methods. 
Numerical methods used for solving PDE are traditionally based on deterministic 
approaches (see, e.g., [23, 24, 27] and references therein). A class of layer methods 
intended to solve semilinear parabolic equations is introduced in [18], where the 
well-known probabilistic representations of solutions to linear parabolic equations 
and the ideas of weak sense numerical integration of stochastic differential equa- 
tions (SDE) are used to construct numerical algorithms. Despite their probabilistic 
nature these methods are nevertheless deterministic. 

Nonlinear parabolic equations with small parameter arise in a variety of appli- 
cations (see, e.g., [2, 4, 8, 11, 26] and references therein). For instance, they are 
used in gas dynamics, where one has to take into account small viscosity and small 
heat conductivity. Some problems of combustion are described by PDE with small 
parameter. They also arise as the result of introducing artificial viscosity in systems 
of first-order hyperbolic equations, which is one of the popular approaches to the 
numerical solution of inviscid problems of gas dynamics [21, 25, 30]. 

Here we construct some layer methods for solving the Cauchy problem for semi- 
linear parabolic equations with small parameter of the form 

au 2 d 02 d 

( + - E-a23(t,x,u)0 + (b (t,x,u) 

+ 2Ci(t Xi U)) 
au 

+ g(t x u) = O t E [to,T), x E Rd 
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(1.2) u(T, x) = p(x). 

The probabilistic representations of the solution to the problem (1.1)-(1.2) are 
connected with systems of SDE with small noise. Just for such systems, special 
weak approximations are proposed in [19]. Applying these special approximations, 
we get new layer methods intended to solve the Cauchy problem (1.1)-(1.2). 

When the solution of (1.1)-(1.2) is regular, it turns out that errors of the proposed 
methods have the form of O(hP + Elhq), where p > q, 1 > 0, and h is a step of time 
discretization. Thanks to the fact that the accuracy order of such methods is 
equal to a comparatively small q, they are not too complicated, while due to the 
large p and the small factor El at hq , their errors are fairly low and therefore these 
methods are highly efficient. The singular case, when derivatives of the solution 
go to infinity as E -- 0, requires a special theoretical investigation. For equations 
of a particular type, we obtain the corresponding theoretical results. As to the 
equation of the general type (1.1), we restrict ourselves to the analysis of the one- 
step error. Further theoretical investigations should rest on a stability analysis and 
on particular properties of the solution. However, we test the methods constructed 
here on model problems for which shock waves are observed. The tests give quite 
good results not only in simulations of wave formation-that corresponds to the 
regular case-but also in simulations of wave propagation, i.e., in the singular case. 
The reasons for these experimental facts and possible ways to get realistic estimates 
of errors of the methods in the singular case are discussed. 

Section 2 gives some results from [18, 19] used in this paper. In Section 3, new 
implicit and explicit layer methods for the problem (1.1)-(1.2) are proposed. Some 
theorems on their rates of convergence both in the regular and in the singular cases 
are proved. For implementation of the layer methods, we need a space discretiza- 
tion. The numerical algorithms based on the proposed layer methods and on the 
linear interpolation are constructed in Section 4. For simplicity, Sections 3 and 4 
deal with the one-dimensional case of the problem (1.1)-(1.2). In Section 5, ex- 
tensions to the multi-dimensional case and systems of reaction-diffusion equations 
are given. In Section 6, we propose both two-layer and three-layer methods in a 
particular case of the problem (1.1)-(1.2). 

All the numerical algorithms presented in the paper are tested through computer 
experiments. Some results of numerical tests on the Burgers equation with small 
viscosity and on the generalized KPP-equation with a small parameter are given in 
Section 7. 

This paper is devoted to initial value problems. Boundary value problems for 
nonlinear parabolic equations with small parameter will be considered in a separate 
work. The probability approach to linear boundary value problems is treated in 
[15, 16, 17]. 

2. PRELIMINARIES 

Here we give, in the required form, some results from [18, 19] which are used in 
the next sections. 

2.1. Probabilistic approach to constructing numerical methods for semi- 
linear PDE. Let the Cauchy problem (1.1)-(1.2) have the unique solution u 
u(t, x) which is sufficiently smooth and satisfies some needed conditions of bound- 
edness (see the corresponding theoretical results, e.g., in [13, 29]). If we substitute 
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u = U(t, x) in the coefficients of (1.1), we obtain a linear parabolic equation with 
small parameter. The solution of this linear equation has the following probabilistic 
representation: 

(2.1) u(t,x) = E(p(Xt,x(T)) + Zt,x,o(T)), t < T x E Rd, 

where Xt,x(s), Zt,x),(s), s > t, is the solution of the Cauchy problem for the system 
of stochastic differential equations 

(2.2) dX = (b(s, X, u(s, X)) + E2c(s, X, u(s, X)))ds 

+Eu(s, X, u(s, X))dw, X(t) = XI 
(2.3) dZ = g(s, X, u(s, X))ds, Z(t) = Z. 

Here w(s) = (w1(S),... ,Wd(S))T is a d-dimensional standard Wiener process, 
b(s, x, u) and c(s, x, u) are d-dimensional column-vectors compounded from the co- 
efficients b2(s, x, u) and c'(s, x, u) of (1.1), a(s, x, u) is a d x d matrix obtained from 
the equation a(s, x, u) = U(s x, U)uT(s, x, u), where a = {aij}; the equation is solv- 
able with respect to a (for instance, by a lower triangular matrix) at least in the 
case of a positive definite a. 

To simplify the notation, we write u(t, x) and Xt,x(s) instead of u(t, x; E) and 
X (s) throughout the paper. 

Introduce a discretization, for definiteness the equidistant one: 

T = tN > tN-1 > ... > to = t, h := 
T - to 

N 

Note that all the methods given in the paper can easily be adapted for a nonequi- 
distant discretization. For instance, we use a variable discretization step h in some 
of our numerical tests (see Section 7.1). 

We have 

U(tk, X)= E(G(Xtk,X(T)) + Ztk,x,o (T)) 

E(P(Xtk+l Xtk,x(tk+l)(T)) + 
Ztk+l,Xtk,x(tk+l),Ztk,x,O(tk+l) (T)) 

= EEQ((Xtk+l,Xtk,x(tk+l) (T)) 

+ Ztk+l,Xtk ,x(tk+1),Ztk,x,o(tk+1) (T) Xtk,x (tk+1 ) I Ztk,x,O (tk+1 )). 

Because Zt,x,z(s) = Zt,x,o(s) + z, t < s from this we get 

(2.4) 

U(tk, X) 

EE(p(Xtk+l ,Xtk,x(tk?l ) (T)) + Ztk+l ,Xtk,x(tk+1),o(T)1Xtk,x (tk+l), Ztk,x,o (tk+l)) 

+ EE(Ztk,X,o (tk+l)lXtk,x (tk+l) I Ztk,X,O (tk+l)) 

= E(u(tk+l IXtk,x(tk+l)) + Ztk,x,O(tk+l))- 

In accordance with the probabilistic approach to constructing numerical methods 
for semilinear PDE from [18], the ideas of weak sense numerical integration of SDE 
[12, 14, 22] are employed to obtain some approximate relations from (2.2)-(2.4). 
The relations allow us to express approximations u-(tk, x) of the solution u(tk, x) in 
terms of u(tk+1,x) recurrently, i.e., to construct layer methods which are discrete 
in the variable t only. To clarify the approach, it is relevant to derive one of the 
methods from [18] which is used in this paper in a broad fashion. For simplicity, 
we restrict ourselves to the case d = 1. 
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Applying the explicit weak Euler scheme with the simplest noise simulation 
[12, 14, 22] to the system (2.2)-(2.3), we get 

(2.5) Xtk,X(tk+1) = x + hb(tk, x, U(tk, x)) + 2 hc(tk, X, U(tk, X)) 

+?h /~ U(tk, X, U(tk, X))(k, 

Ztk,X,Z(tk+1) 
- 

Ztk,X,Z(tk+l) = Z + hg(tk, x, u(tk, X)), 

where (N-1, (N-2, .. ., Io are i.i.d. random variables with the law P(Q = ?1) = 1/2. 
Using (2.4)-(2.5), we obtain 

(2.6) 

U(tk, X) i E(U(tk+1, Xtk,x(tk+l)) + Ztk,x,O(tk+l)) 

- u(tk+l, X + hb(tk, X, U(tk, X)) + 82 hc(tk, X, U(tk, X)) + h 1/2 (tk, X, U(tk, X))) 2 

+ -U(tk+l, X + hb(tk, X, U(tk, X)) + 82 hc(tk, X, U(tk, X)) -h h12 U(tk, X, U(tk, X))) 2 
+hg(tk, X, U(tk, X))- 

Thus, we can calculate the approximations uE(tk, x) layerwise: 

(2.7) u(tN,X) (X), 

U_(tk, X) 

- 
27(tk+l, X + hb(tk, x, Xi(tk, X)) + 82hC(tk, X, tl(tk, X)) + ehl /(tk, X, ti(tk, X))) 2 

+ -- (tk+1, X + hb(tk, X, t7(tk, X)) + 82 hC(tk X, ti(tk, X)) -h 1/2Y(tk, X, t(tk, X))) 2 
+ hg(tk, X, U(tk, X)), k = N-1,I... , 1,O. 

The method (2.7) is an implicit layer method for solving the Cauchy problem 
(1.1)-(1.2). This method is deterministic, even though the probabilistic approach 
is used for its construction. 

Applying the method of simple iteration to (2.7) with u-(tk+1, x) as a null iter- 
ation, we get the first iteration (we denote it as u-(tk, x) again, since this does not 
cause any confusion): 

(2.8) U(tN,X) = (X) 

U(tk, X) 

= U(+l UX + hb(tk, x, U(tk+1, X)) + 82 hC(tk X, 7(tk+l, X)) 2 
+ Ehl/2U(tk, X, 2(tk+ , X))) 

+ 2-U(tk+l, X + hb(tk, x, U(tk+l, X)) + 82hC(tk, X, U(tk+1, X)) 

- Eh /2(tk, X, U(tk+1, X))) 

+ hg(tk, XI U(tk+1, X))I k = N-i, .. ., 1,O. 

According to the propositions proved in [18], this explicit layer method has one- 
step error estimated by O(h2) and global error 0(h). 
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Of course, all the results from [18] can be applied to solving the problem with 
small parameter (1.1)-(1.2). But since the probabilistic representation of the solu- 
tion to (1.1)-(1.2) is connected with the system of differential equations with small 
noise (2.2)-(2.3), one can expect that use of weak approximations for SDE with 
small noise [19] leads to new effective methods for solving (1.1)-(1.2). 

2.2. Some weak approximations for SDE with small noise. Here we recall 
some weak approximations for SDE with small noise: 

(2.9) dX = b(t, X)dt + E2c(t, X)dt + Eu(t, X)dw(t), X(to) = x, 

t E [to,T], 0 < E < Eo, 

where X, b(t,x), and c(t,x) are d-dimensional column-vectors, ((t,x) is a d x m 
matrix, w(s) = (wI(t) ... I Wm(t))T is an m-dimensional standard Wiener process, 
Eo is a positive number. The coefficients are assumed to satisfy the corresponding 
conditions of smoothness and boundedness (the details are given, e.g., in [14, 19]). 

The one-step error p and the global error R of a weak approximation Xk 
Xt,x (tk) at the point (t, x) are defined as 

p = IEf (Xt,x(t + h)) - Ef (Xt,x(t + h))I, 
R - IEf (Xt,x(T)) -Ef (Xt,x(T))I 

where f (x) is a function belonging to a sufficiently wide class (the details are given, 
e.g., in [12, 14, 22]). 

Below we write down a number of weak schemes from [14] and [19] which are 
used in the next sections. 

The Euler scheme: 

(2.10) Xk+1 Xk + hb(tk, Xk) + 82 hC(tk, Xk) + h 1/2U(tk, Xk)(k, 

p = 0(h2 )I R = 0(h), 

where the (k ((k,... , (km) are i.i.d. m-dimensional vectors with i.i.d. components 
and each component is distributed by the law P(( = ?1) = 1/2. 

The Runge-Kutta scheme with error O(h2 + E2h): 

(2.11) Xk+1 = Xk + -hb(tk,Xk) + hb(tk+1,Xk + hb(tk,Xk)) 22 
+ 2hc(tk, Xk) + Eh / (U(tk, Xk)(k, 

p = 0(h3 + E2h2), R = O(h2 + E2h) 

where the (k are the same as in (2.10). 
The special second-order Runge-Kutta scheme (for SDE with small additive 

noise, i.e., a is a constant matrix; c_ 0): 

(2.12) 
1 1 12/ 

Xk+1 =Xk + -hb(tk, Xk) + -hb(tk+liXk+hb(tk,Xk)+Eh /h1 Jok) +Eh /aki 2 2 
p= O(h3)j RO= (h2)) 

where the (k ((k,... , () are i.i.d. m-dimensional vectors with i.i.d. components 
and each component is distributed by the law P(Q = 0) = 2/3, P(Q = ?3) = 1/6. 
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The special Runge-Kutta scheme with error O(h4 + ?2h2) (for SDE with small 
additive noise, i.e., a is a constant matrix; c 0): 

(2.13) Xk+1 Xk + -(k1 + 2k2 + 2k3 + k4) + Ehl/2 k 6 
ki hb(tk, Xk), k2= hb(tk+1/2, Xk + k1/2), 

k3= hb(tk+l/2, Xk + k2/2 + Eh 1/2 Uk), k4 = hb(tk+l, Xk + k3 + Eh1/2 Uk) 

p = O(h5 + e2h3), R = O(h4 + ?2h2) 

where the (k are the same as in (2.12). 
Note that in Sections 6 and 7 we also handle some other special weak approxi- 

mations. 

3. METHODS FOR A GENERAL SEMILINEAR PARABOLIC EQUATION 

WITH SMALL PARAMETER 

Here we construct new layer methods for semilinear parabolic equations with 
small parameter (1.1)-(1.2), using the probabilistic approach from [18] and applying 
specific weak approximations from [19] to the system with small noise (2.2)-(2.3). 

3.1. Implicit layer method. For simplicity, let us consider the Cauchy problem 
(1. 1)-(1.2) for d = 1: 

au E2 2 __2U 
__2Ct_X 

)a 
(3.1) at + 2 a (t, x, u)2 + (b(t, x, u) ? 2c(t, x,u))0 g(t, x u) = 0, 

t E [to,T), x E Rc, 
(3.2) u(T, x) = p (x). 

The probabilistic representation of the solution u(t, x) to this problem has the 
form (2.1)-(2.3) with d - 1. 

Applying the Runge-Kutta scheme (2.11) to the system (2.2)-(2.3), we get 

(3.3) Xtk,X(tk+l) _ Xtk,X(tk+1 ) 

- x + -hbk + -hb(tk+l, X + hbk, u(tk+l, X + hbk)) 
2 2 

+ 2 hCk + Eh 1/ Ukfk, 

Ztk ,z (tk+l) -.Z,k,z ,Z ( tk) = l Z + - hgk + - hg(tk+l, x + hbk, U(tk+l, x + hbk)), 2 2 
where bk, Ck, JUk, and gk are the coefficients b, c, a, and g calculated at the point 
(tk, X, U(tk, X)). 

Using the probabilistic representation (2.4), we obtain 

U(tk, X) c E(U(tk+1, Xtk,X (tk+1 )) + Ztk,x,O (tk+1 )) 

- u(tk+l, X + h[bk + b(tk+l, X + hbk, U(tk+l, X + hbk))1/2 + E hCk + Eh. /Uk) 2 

+-U(tk+1,X + h[bk + b(tk+l,X + hbk, U(tk+l,X + hbk))]/2 + ? hCk -h h2Uk) 
2 

+ -hgk +- hg (tk+ 1, X?hbk, U(tk+ 1, X?hbk)). 2 2 
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We can approximate u(tk, x) by v(tk, x) found from 

(3.4) 

V(tk, X) 

- U(tk+l, X + h[bk + b(tk+1, X + hbk, U(tk+1, x+ hbk))]/2 + ?hkk +) 2 
1 

+ -U(tk+1, X + h[bk + b(tk+1, X + hbk, U(tk+1, X + hbk))]/2 + E hak -Ehl/2 k) 2 

+ - h?k + 2 hg(tk+l, x + hbk, u(tk+1, x + hbk)), 
2 2 

where bk, Ck, (k, and 9k are the coefficients b, c, a, and g calculated at the point 
(tk, X, V(tk, X)). 

The corresponding implicit layer method has the form 

(3.5) u-(t N, x) = (X)1 

U(tk, X) = -U(tk+l, X + h[bk + b(tk+l X + hbk, U-(tk+1, X + hbk))]/2 2 
2 12 + E hC-k +,Fh /ak) 

+ -u(tk+l, X + h[bk + b(tk+l, x + hbk, U(tk+l, X + hbk))]/2 
2 

+ ? hCk - Eh /2 k) 

+ -hgk + -hg(tk+l, x + hbk, u(tk+l, x + hbk)), k = N-1,. . ., 0, 
2 2 

where bk, Ck, (k, and gk are the coefficients b, c, U, and g calculated at the point 
(tk,i Xi U(tk i X))e 

3.2. Convergence theorem in the regular case. Let us make the following two 
assumptions. 

(i) The coefficients b(t, x, u) and g(t, x, u) and their first and second derivatives 
are continuous and uniformly bounded, and so are the coefficients c(t, x, u) and 
a(t, x, u) and their first derivatives: 

(3.6) _ _ < K iaj I <K, O<i+j+l <2, 

&t%&j&U+'l% 
K,O i++< 

at, axj au, < K | a | <K, O<i+j?l < 1, 

to < t < T, x E R1, uo <u < u?, 

where -oo < uo, u? < oo are constants. 
(ii) There exists a unique bounded solution u(t,x) of problem (3.1)-(3.2) such 

that 

(3.7) - uu < u* < u(t, x) < u* < u, 

where u*,U u*are constants, and there exist the uniformly bounded derivatives 
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Below, in Section 3.4, we consider the singular case, when the condition (3.8) is 
not fulfilled. 

In Lemma 3.1 and Theorem 3.1 we use the letters K and C without any index 
for various constants which do not depend on h, k, x, E. 

Lemma 3.1. Under assumptions (i) and (ii), the one-step error of the implicit 
layer method (3.5) is estimated by O(h3 + E2h2), i. e., 

|V(tk, X) - U(tk, X)| < C * (h 3 + E2h2), 

where V(tk, x) is found from (3.4), and C does not depend on h, k, x, E. 

Proof. Introduce the function 

Utk,X (V) 

: 22(tk+1, x + h[bk + b(tk+1,x + hbk, u(tk+1, + hbk))]/2 + 2hk + /2 

+ -U(tk+1, X + h[bk + b(tk+1 X + hbk, U(tk+l, X + hbk))]/2 + ? hck- Eh /2Uk) 
2 

1 -~~ 1 / 

+ ghgk + -hg(tk+1,x + hbk, U(tk+l, X + hbk)), 
2 2 

where bk, Ck, uk, and gk are the coefficients b, c, a, and g calculated at (tk, x, v). 
To prove the lemma, we make use of the method of simple iteration. Define the 

sequence 

V(i) (tk , X) := Utk ,X (V(i- 1) (tk , X) ) , i= 1 , 2, ... .I 

and take U(tk, x) as a null iteration: 

V(0) (tk, X) = U(tk, X). 

First we prove that 

(3.9) v(1)(tk,x) - v(o)(tk,x)I v(1)(tk,x) - u(tk,x)I < C. (h3+ E?h 2). 

We have 

(3.10) 

V( )(tk, x) 

__1 
- U(tk+1, X + h[bk + b(tk+1 x + hbk, U(tk+l, x + hbk))]/2 + ?2 hCk+ Ehl/2 Uk) 2 

+ -u(tk+1 x X+ h[bk + b(tk+l, X + hbk, U(tk+l, X + hbk))]/2 + 82 hCk - Eh 12Uk) 
2 

+ 2hgk + 1hg(tk+1,x + hbk,u(tk+I,x + hbk)), 

where bk, Ck, Uk, and gk are the coefficients b, c, a, and g calculated at the point 
(tk, X, U(tk, X))- 
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Using assumptions (i) and (ii), we expand the functions u and g: 

U(tk+1, X + hbk/2 + hb(tk+l, X + hbk, U(tk+l, X + hbk))/2 + ?2 hCk ? Ehl /2k) 

__U __ 1 abh2 + b 2 1AO 
U(tk, X) + h + (bkh + - ih + bkh2 lab h a9t a9x 2at 2aOx 2OuaOt 

+---A Oub h2 + 82Ckh ? EUkh/2) 
2 au ax 

1 02 U h2+ 02 (bkh2 ?8kh3/2) 
2 at2 atax 
a2U (12 2 ,1 2 2 12 

+ ax2 (-?2 Uk +- b2kh? h h?h2Uk (bkh + 8Ckh)) 

? 1 0a U3 3h3/2 3 + E 2), 

9(tk+1, X + hbk, U(tk+l, X + hbk)) 

-gk+ 09h+ 09bkh+ 09 auh+ 090u bkh+O(h2)1 at a9x a9uat a9ua0x 
where the derivatives of u are calculated at the point (tk, x), the derivatives of the 
coefficients b and g are calculated at the point (tk, x, U(tk, x)), and 

(3.11) 1O(h3 + e2h2)1 < C . (h3 + e2h2), 1O(h2)1 < C . h2. 

Substituting these expansions in (3.10), we get 

V(1)(tk,X) = U(tk,X) + h( at + ax (bk + 2 
Ck) + 2 0Uk 2 + 9k) 

1h2 02U abau A auau a2u + 02 a9+ a9au 
2 (at2 +at aX u atax ?kaxat at au at 

+ bkh2 a2u abau a+ - u + bk 9 +-+--) 
2 (atax ax ax +u aXx a0X k a2X + aUa0X 

+O(h3 + e2h2). 

Then, adding and subtracting the appropriate terms of order O(82h2) in the 
above expression, we obtain 

(3.12) a~~~~~~~~~0u au e2a02 u 2 
(3.12) v(1) (tk, x) = u(tk, x) + h(t + , (bk + E2Ck) + 2 2k+ 9k) 

1 2 0a + u (b + 2c) + a2 +g) 
2 ata( t a9x2 

1 2 a (0u + 0u .(b+2C) + 2 0 2 +) + O(h3 + 22) 
2 ah0xa0t a9x 2 a x 2 9' 

where, after differentiation, all the expressions are calculated at the point (tk, x). 
Since u(t, x) is the solution of problem (3.1)-(3.2), the relation (3.12) implies 

V(1)(tk,X) = U(tk, X) + O(h3 + 2 h 2). 

The estimate (3.9) is proved. 
Clearly, for a sufficiently small h, we obtain 

uo <-Ch2(h + E) +U* < v(1) (tk, X) < u* + Ch2(h + E) < uo, x E R1. 
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Using assumptions (i) and (ii), we get 

IV(2 (tk, X) - V(1)(tk, X)| = IUtk,X(v() (tk, X)) - Utk,X(v W)(tk, X))| 

< Khv() (tk, X) - V(O) (tk, X) I, 

whence it follows that 

IV(2) (tk, X) - V(O) (tk,x)| < (1 + Kh) Iv(1) (tk, X) - V(O) (tk, X) . 

It is not difficult to show that there exists a sufficiently small h such that the 
procedure can be continued infinitely (i.e., u0 < V(0)(tk, x) < u?, i = 2, 3,...) and 

IV(n) (tk X) V(n-) (tk, X)| < (Kh)n1 IV(1) (tk, X) - V )(tk, x)|, 

IV(n)(tk, X) - V(0)(tk,x)| < 1 (Kh)n IV(1)(tk, x) - V(0)(tk X)|, n = 1, 2,3,. 
- l -Kh 

Further, we prove by the usual arguments that there is a unique root of the 
equation 

V(tk,X) = Utk,x(V(tk,X)) 

such that 

(3.13) IV(tk, X) - v(O)(tk,x)) I 1 _Kh v(1)(tk,x) - v(O)(tk,x)I. 

Substituting (3.9) in (3.13), we come to the statement of the lemma. Lemma 3.1 
is proved. 

Let us prove the following theorem on global convergence. 

Theorem 3.1. Under assumptions (i) and (ii), the global error of the implicit layer 
method (3.5) is estimated by O(h2 + e2h): 

U(tk, X) - O(tk, X) I < K. (h2 + e2h), 
where the constant K does not depend on h, k, x, E. 

Proof. We follow the proof of the corresponding theorem in [18]. 
Denote the error of the method (3.5) accumulated at the k-th step ((N - k)-th 

layer) as 

(3.14) R(tk, x) := u(tk, x) - U(tk, X) 

Introduce the notation 
1 - 1 +E12- 

Xk+1 x+ -hbk + -hb(tk+l,x+ hbk,'U(tk+l, x+ hbk)) +k2hCk ?eh1/Yk, 
2 2 

where (we remember) bk, ek, and (k are the coefficients b(t, x, u), c(t, x, u), and 
aJ(t, x, u) calculated at t= tk, X = X, U = U(tk, X) = U(tk, X) + R(tk, X). 

Using this notation, (3.5), and (3.14), we get 

(3.15) U(tk, x) + R(tk, X) =u(tk, X) 

=U+)+ k)(tk 
, 

+) + hgk + -hg(tk+l, x+ hbk,U(tk+,x+hbk)) 
2 2~~ 2 2 

= 28(t Xk+1) + 2 Xk+) )+ +R(tk+l,X(+)) + -R(tk+l,X(+) 

+-hgk + xhg(tk+l, + hbk, U(tk+l, X + hbk)). 
2 2 
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Clearly, R(tN, x) = 0. Below we prove recurrently that R(tk, x), k = N-i, ... , 0, 
is sufficiently small under a small h. Using the assumption (3.7), we shall be able 
to justify the following suggestion (we need it now): the value U(tk, X) + R(tk, x) 

remains in the interval (u0, u?) for h small enough. 
We have 

bk= b(tk, X, U(tk, X))= b(tk, x, U(tk, X) + R(tk, x)) 

= b(tk, X, U(tk, X)) + /b = bk + b, 

where bk := b(tk, x, U(tk, x)) and due to assumption (i) /\b satisfies the inequality 

(3.16) lZbl < KIR(tk, x) I . 

Analogously, 

(3.17) Ck = Ck + /\c, |/\c| < K|R(tk,x)|, dk =k + A\u, jAu1 < KIR(tk,x) , 

gk = gk + ZgI, ZAgl < K|R(tk,x)I. 

Using (3.16)-(3.17) and (3.14), we get 

(3.18) X+ -X+2h(bk+ Ab) 

+2hb(tk+l, x + h[bk + sb], u(tk+l, X + h[bk + Z\b]) + R(tk+l, x + hbk)) 

+?2h[Ck + A\c] ? Eh /2 [Uk + AZU] 

-x + hbk + Xhb(tk+l, x + hbk, u(tk+l, X + hbk)) + 82hCk Ehl/2 k 2 2 
+h[/\b/2 + E2Ac] ? Eh1/2AU + h2AL + hA2 

and 

(3.19) -hgk + Xhg(tk+l, x + hbk, U(tk+l, X + hbk)) 
2 2 

--hgk + -hLg 
2 2 

+2hg(tk+1,x + h[bk + /b], U(tk+l,X + h[bk + z\b]) + R(tk+l,x + hbk)) 

1 1~~~~~~~~~ 
2hgk + xhg(tk+l,X+ hbk, U(tk+l, x + habk)) + 2hL9g -2A3 + hA4, 

where I/'A 1, IL\3 1 < KIR(tk, x) I and I A2 1, I/\41 < KIR(tk+l, X + hbk)L 

Substituting (3.18) and (3.19) in (3.15) and expanding U(tk+, X ),it is not 

difficult to obtain 

1 
U(tk, X) + R(tk, X) =V(1)(tk, X) + -R(tk+lI X(+) 

2kI 

+ 2 (tkl, k+) ) + r(tk , X) + r(tk , X) , 

where v(1)(tk,x) is defined in (3.10) and 

Ir(tk, x)I < KhIR(tk+l, x + hbk)I, II(tk, x)I < KhIR(tk, x)I. 

Then by (3.9) we get 

(3.20) 

R(tk, x) = -R(tk+1, X ) + X k) ) + r(tk, X) + f(tk, X) + 0(h3 + 622 R(k X 
2Rt+1,X(+ 2R(klkX+I 
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Introduce the notation 

Rk : max |R(tk,x)|. 
-O0<X<+OO 

We have, from (3.20), 

RN=0, Rk<Rk+l+ KhRk+ KhRk+l + C (h3 + 82h2), k N-1,... ,0. 

Hence 

Rk<_ (( Kh)Nl) (h 2? 2h) -2K 1-Kh 

and therefore (remember that N = (T - to)/h) 

Rk < 2 (e4K (T-to) - 1) . (h2 + 2 h). 

Theorem 3.1 is proved. 

Remark 3.1. For linear parabolic equations, i.e., when the coefficients of (3.1) do 
not depend on u, the method (3.5) becomes the explicit one with the global error 
0(h2+E2h), and can be applied to linear parabolic equations with small parameter. 
Note also that if the dimension d of the linear problem is high (d > 3 in practice) 
and it is enough to find the solution at a few points only, the Monte-Carlo technique 
is preferable. 

3.3. Explicit layer methods. For implementation of the implicit method (3.5), 
one can use the method of simple iteration. If we take U(tk+1, x) as a null iteration, 
in the case of b(t, x, u) 7& b(t, x) or g(t, x, u) 7& g(t, x) the first iteration provides 
the one-step error 0(h2) only. One can show that by applying the second iteration 
we get O(h3 + E2h2) as the one-step error. However it is possible to reach the 
same one-step accuracy by some modification of the first iteration that reduces the 
number of recalculations. The explicit layer method obtained on this way has the 
form (we use the same notation u{(tk, x) again) 

(3.21) u-(tN,X) = - (X), 

bk = b(tk i Xi U(tk+l, X)), Ck = C(tk, X, U(tk+l v X)), (Jk = (J(tk,i Xi U(tk+~l X)),I 

U(1)(tkx) X) = (tk+l, X+ hbk) + hg(tk, 
x,i (tk+l, X)), 

1 
tl(tk,X) = -U(tk+1, x+ h[b(tk,x,'U( )(tk,x)) + b(tk+ ,x + hbk,i (tk+l, X + hbk))]/2 

+? hk + Eh / (k) 

1 
+ ?U(tk+l, X + h[b(tk, x, u(1 (tk, X)) + b(tk+l1 x + hbk, U(tk+l, X + hbk))]/2 

2~~~~ 
+? h -k Eh /2 (k) 

1 1 
+-hg(tki xI U(1) (tk i X)) + 2hg(tk+l, x + hbk, U(t+,X+hk) 

2 2 
k =N - 1,... ,0. 

The following theorem can be proved by arguments like those used for Lemma 
3.1 and Theorem 3.1. 
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Theorem 3.2. Under assumptions (i) and (ii), the global error of the explicit layer 
method (3.21) is estimated by O(h2 + e2h) 

|U(tk,X) - f(tk, X) I< K (h +?h) 

where the constant K does not depend on h, k, x, e. 

Remark 3.2. Naturally, we can take other weak approximations (more accurate 
than the ones we use above) of SDE with small noise [19] to construct the corre- 
sponding high-order (with respect to h and E) methods for the problem (3.1)-(3.2). 
In Section 6 we give high-order methods in some particular cases of the equation 
(3.1). 

3.4. Singular case. The estimates of errors for the methods proposed above (The- 
orems 3.1 and 3.2) are obtained provided the bounds of derivatives of the solution 
to the problems considered are uniform with respect to x E Rfd, t E [to, T], and 
O < E< * (see (3.8)). This assumption is ensured, e.g., in the following case. 
Consider the first-order partial differential equation obtained from (3.1) with e 0 

(3.22) at+ b(t, xi u?) a + g(t, x, u?) = O, t E [to, T), x E R11 

(3.23) u?(T,x) =p(x). 

If the coefficients of the equation (3.22) and the initial condition (3.23) are such 
that the solution u? (t, x), x E R1, is sufficiently smooth for to < t < T, then 
the derivatives of the solution u(t, x) to (3.1)-(3.2) can be uniformly bounded with 
respect to 0 < E < E* for t E [to, T] (see [7, 28]). Note that generally the assumption 
that the coefficients of (3.22) and the initial condition so(x) are bounded and smooth 
functions is not enough to ensure the regular behavior of u? (t, x) at any t < T [7]. 

A lot of physical phenomena (e.g., formation and propagation of shock waves) 
having singular behavior is described by equations with small parameter. The 
derivatives of their solutions go to infinity as E - 0 and, rigorously speaking, 
Theorems 3.1 and 3.2 become inapplicable. 

After the known change of variables t = E2t/, X = ?2x', the problem (3.1)-(3.2) 
is rewritten for v(t', x') := u(E2t/, ?2X') in the form 

(3.24) 0 + -U2(2t,, 2x, V) 
2 + (b(E2t', E2X, V) + E2C(E2t, E2X' V)) 

9 
at,' ax'2 D9x' 

+ 2g(Q2t',&2X',V) = 0, t' E [to/2 ,T/9 ), x' c R1, 0 < E < , 

(3.25) v(T/, x) = x 

If assumptions like (ii) hold for the solution v(t', x') of (3.24)-(3.25) (we ob- 

serve that the problem (3.24)-(3.25) is considered on long time intervals), then the 

derivatives of the solution u(t, x) to (3.1)-(3.2) are estimated as 

(3.26) AtiOxi -2(i+j) 
u 

t E [to, T], x E R1 0 < E < E*. 

These bounds are natural ones for the problem (3.1)-(3.2) in the singular case. 

If one followed the arguments of Lemma 3.1 and Theorem 3.1 in the singular case 

(i.e., taking the assumptions (i), (3.7), (3.26) instead of (i)-(ii)), an estimate of the 

form 4 - (eK(T t)/E -1) would be obtained for the proposed methods. Due to the 

big factor 1/2 in the exponent, this estimate is meaningless for practical purposes. 
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Our numerical tests (see Section 7.1) demonstrate that the proposed methods are of 
essentially better quality than could be predicted by this estimate. Apparently, the 
methods work fairly well in the singular case because the derivatives are large only 
in a small domain known as interior layer (see, e.g., [8]). The further theoretical 
investigation, namely, obtaining a realistic estimate for the errors of the methods 
proposed, should rest on a stability analysis and on more extensive properties of 
the solution considered. Recently the similar problem for finite elements methods 
has been considered in a few papers (see [3] and references therein). 

However, in some particular, but important, singular cases of the problem (3.1)- 
(3.2) we get reasonable estimates (without 1/g2 in the exponent) for the errors of 
the proposed methods by the arguments of Lemma 3.1 and Theorem 3.1. As an 
example, we give the following two theorems here (see their proofs in [20]). 

Theorem 3.3. Assume the coefficients b and a in (3.1) are independent of u. Let 
the conditions (i) and (3.7) hold, and let the derivatives I&9+)ju/&t6xxJ , i = 0,j = 

1,2,3,4; i = 1,j = 0,1,2;i = 2,j = 0,1; i = 3,j = 0, satisfy (3.26). Then for 
a sufficiently small h/I2, the global error of the explicit layer method (3.21) is 
estimated as 

|u(tk,X) - U(tk, X) < i (eK(T-to)-1) 

where the constants C and K do not depend on h, k, x, E. 

In a lot of applications (e.g., in shock waves) the derivatives are significant only 
in a small interval (interior layer) (x* (t), x* (t)) of width Ix* (t) - x* (t) ?2 

(3.27) ti 
u 

< K2(i+j) t E [to, T], x E (x*(t), x* (t)), 0 < E < E*, 
and 

(3.28) i+j K, t E [to,T], x , (x*(t),x* (t)), 0 < E < E, 

I .,9ti,) j Idx < K, i + j 7j O, t E [to,T], 0 < E < E*. 
&ti&xJ 

x?(x* (t)X*(t)) 

Theorem 3.4. Assume the coefficients b and a in (3.1) are independent of u. Let 
conditions (i) and (3.7) hold, and let the derivatives &9i+ju/0&t.0&xj, i = O,j = 
1, 2, 3, 4; i = 1, j = 0, 1, 2; i = 2, j = 0, 1; i = 3, j = 0, satisfy (3.27) aind (3.28). 
Then for a sufficiently small h/s2, the global error of the explicit layer method (3.21) 
is estimated in 11-norm as 

(3.29) IR JU(tk,X) - (tk,x)ldx < ? - (eK(Tto) -1) 

where the constants C and K do not depend on h, k, x, E. 

The analogous theorems for the simpler method (2.8) give the same estimates of 
its error. However, in our experiments the layer method (3.21) gives better results 
than (2.8). To show the advantages of the method (3.21) in the singular case 
theoretically, further investigation is required. Seemingly, a more accurate analysis 
of the error of the method (3.21) should rest on more extensive properties of the 
solution u(t, x). 

See also Remarks 6.1 and 7.1, where in the singular situation we give reasonable 
estimates of the errors for some other particular cases of the problem (3.1)-(3.2). 
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4. NUMERICAL ALGORITHMS BASED ON INTERPOLATION 

To calculate u(tk, x) c u(tk, x) at a certain point x by the explicit layer method 
(3.21), one can use a recursive procedure. But it is evident that if the number 
of steps N = (T - to)/h is relatively large, the recursive procedure is practically 
unrealizable due to the huge volume of needed calculations. In [18] another way is 
proposed, which is based on a discretization in the variable x and on an interpolation 
of u-(tk,X). 

Introduce an equidistant space discretization: {xi = xo+jhx, j = 0, ?1, ?2, ... }, 
where xo E R1 and hx is a sufficiently small positive number. 

When it does not lead to any misunderstanding, we use the old notation u-, u(1), 

etc. for new values here. 

Theorem 4.1. Under assumptions (i) and (ii), the numerical algorithm based on 
the explicit method (3.21) and on the linear interpolation: 

(4.1) U-(tN,X) = (p(X), 

bk,j = b(tk, Xj, U(tk+1, Xj)), Ck,j = C(tk, Xj, i(tk+1, Xj)), 

(k,j = (J(tk, Xj, U(tk+1, Xj)), 

U-(1 (tk, Xj) = U(tk+1, Xj + hbk,j) + hg(tk, Xj, U(tk+1, Xj)), 

U- (tk, Xj) 

= -i(tk+l, xj + h[b(tk, Xj, U()(tk,Xj)) 

+b(tk+1, xj + hbk,j, U(tk+1, Xj + hbk,j))]/2 
+ ?2hCk,j + Ehl/2 &k,j) 

Xj + h[b(tk, X,'u(1)(tk, Xj)) 

+ b(tk+l,xj + hbk,j,'U(tk+l,Xj + hbk,j))]/2 

+ &2hCk,j -Ehl/2 k,j) 

+- hg(tk xj U() (tk Xj)) + hg(tk+l,xJ + hbk,j,U(tk+l,xi + hbk,j)), 22 
xj+j1- x x - A 

U(tk,X) = U(tk,Xj) + h U(tk,Xj+l), Xj < X < Xj+l, 

j = 0, ?1, 2,..., k = N-1, ..., 0, 

has global error estimated by O(h2 + &2h) if the value of hx is selected as hx= 
a min(h3/2, h), where a is a positive constant. 

Proof. Here we follow the proof of the corresponding theorem in [18]. 
Introduce the notation 

xj + -hb(tk,xj,I u()(tk,xj)) + hb(tk+l,xi + hbk,j(tk+1,xj + hbk,j)) 
k+1,j ~ ~ ~ ~~+ =C, + 2h/(kj 

?& 2h~k,j ? Eh 1/2&k,j. 

Just as in Theorem 3.1 for the implicit method (3.5), it is possible to obtain the 
expression like (3.20) for the algorithm (4.1) at the nodes xj: 

R(tk,Xj) = IR(tk+1,X(+j j) + 2R(tk+1, X(+l j) + r(tk, xj) + O(h3 + &2h2), 

1r(tk,Xj) ? < KhRk+l, 
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where 

Rk+1 max |R(tk+l, x)I 
-0O<X<+00 

(unlike (3.20), this formula does not contain i(tk,xj), because the algorithm (4.1) 
is explicit and, for instance, /Ab satisfies the inequality lzbl < KIR(tk+l, xj) ). 

Hence 

(4.2) IR(tk, x j) ?< Rk+1 + KhRk+l + C (h3 + ?2h2). 

We have 

(4.3) U(tk, x) = U h u(tk, xj) + Ui(tk, Xj+) + O(hz), xj <x<x+, 

where the interpolation error O(hx) satisfies the inequality 1O(hx) < Chx with C 
independent of h, k, hx, j, x, ?. 

From the last relation of (4.1) and from (4.3), we get 

RN i X) = S+h R(tk, Xj) + 
X 

jR(tk iXj+l) +O(h2,x<x< +, 

whence, due to (4.2) 

JR(tk, x)l < Rk+1 + KhRk+l + C* (h3 + s2h2 + hx) 

with a new constant C. 
As hx = a min(h3/2, &h), we can now obtain the statement of the theorem by 

the usual arguments. Theorem 4.1 is proved. 

Remark 4.1. The way of proving Theorem 4.1 gives us some restriction on the type 
of interpolation procedure which can be used for constructing the numerical algo- 
rithm. The restriction is such that the sum of the absolute values of the coefficients 
staying at u(tk, ) in the interpolation procedure must be not greater than 1. We 
can make use of B-splines of the order O(h2), for which this restriction is valid. 
Cubic interpolation of order O(h 4) does not satisfy the restriction. However, our 
numerical tests give fairly good results in the case of the algorithm based on cubic 
interpolation. See also Section 7.1, and some details and theoretical explanations 
in [18]. 

Remark 4.2. One can use a nonequidistant space discretization. For instance, one 
can take small hx in the intervals of x where derivatives of the solution are big, and 
take relatively large hx outside these intervals. 

5. EXTENSIONS TO THE MULTI-DIMENSIONAL CASE 

AND TO REACTION-DIFFUSION SYSTEMS WITH SMALL PARAMETER 

It is easy to generalize our algorithms to the multi-dimensional case (d > 1). 
For instance, consider the algorithm like (4.1) in the case of d = 2. Introduce the 
equidistant space discretization: xi =xi +jhxl, x2 = x2 +lhX2j j, 1= 0, ?1l ?2, ...I 
(x ,xX2)T E R2, hxi = aoemin(h3/2,&h), i = 1,2, and the ai are positive constants. 
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The algorithm with global error O(h2 + &2h) has the form 

(5.1) U_i(tN, X1, x2) = (X1 X2) 

bk,j,l = b(tkiXjiXlivU(tk+1i 2vl ) Ck,j,l = C(tk, Xj, I ,IU(tk+l, XjX I xi 

(k,j,l = ((tk, Xj Xl I U(tk+l, X, xi 

U(1) (tk I UX) = U(tk+l, X + hbk,j, I, X + hb1) + X U(tk+l, X X 

k+l,j,lxk+l,j,l) = (xj,xI )T +2 hb(tk, Xj 3,u(t k,x,x)) 

+ 2 hb(tk+l, xIl + hbkjI, XI2 

+ h j (tk+1, dXl + hbkl1, xl + hb2j1)) 
+ ?2hCk,j,l, 

U (tk I 31, X1 

4 ( X 1 /2 11 + l/212 1 2 +jU(tk+l Xk+ljI-fhlUkl 1 +,Ehl Ak+lj,l + + 
&flkj kj '1k+l,j,l 

+-hl/2&21 1 +,Ehl/2&22 

+ 4-j(tk+l j k - + &h /2&ki k+jl 

- 1 h1/2&1_2 + 

+ 4 U(tk+l I Xk+l,j,l -?h kj 1 _ Ehl k/2 k+2,j,l 

-1+hl /2&2,1 _-Eh /2&22 + - U(tk+1, Xk+l,j,l kj - 
- Eh1 kj1 kljl 

1 '<12142\ 

?-hg(tk+ ,xjl+hbk j1,l2 +hbk j1, i(tk+lxjh+nhbk Jl,xl2+h22 

1 1 2~~ ~ 2 21 -2 9-2x(2 
I 

kj , k,X ) 

= +h1-x hXI+I 2 U(tk,Xi,Xt)+ 3 *(tk,Xj,X1+l) 

1 1 1 2 2 1 1 29-2 

+ h bk i(tk,xj +l,xl)? + h h - hb2 I x + h 
ii(t X 1x1 2 

)1 

-+ - x1 <x x <x , j,lO,?1,?2,...- 
k=N-1,... ,O. 

The proposed methods are applicable to the Cauchy problem for systems of 
reaction-diffusion equations with small parameter as well. For instance, in the case 
of the system (we take d = 1 for simplicity in writing) 

(5 2~) a+ 2 q ' ) 2- + (bq(t, X2) + cq(t, u)) + gq(t, Xu) , 

uq (T, x) = (pq (x), 
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the method like (3.21) has the form 

(5.3) Uq (tN, X) = (pq(X), 

bq,k = bq(tk,X,u(tk+1,X)), Cq,k = Cq(tk, x, U(tk+, x)), q,k = Uq(tk ,XU(tk+1,x)), 

U(1) (tk, X) = Ui (tk+1, X + hbi,k) + hgi(tk,X, i(tk+1,X)), i = 1,.n. 

iq(tk, X) = 2q(tk+l,X + h[bq(tk, X, u( )(tk, X)) 

+bq(tk+l X + hbq,k, U2(tk+l, X + hbq,k))]/2 + ? h2q,k + Ehl/2&q,k) 

+ 2 uq (tk+1,I X + h[bq (tk, Xi u(1) (tk, Ix)) 

+bq(tk+l X + hbq,k, U_(tk+1, X + hbq,k))]/2 + ?2 haq,k- Eh1/2q,k) 

+?hgq(tkIx I :20) (tk, X)) + hgq(tk+l,x + hbq,k U(tk+1 I X+ hbq,k))v 22 
q = 1,... ,n, k = N-1,...,0. 

It is easy to write down the corresponding algorithm like (4.1) on the basis of 
this method. 

See [18] to obtain such methods and algorithms for another type of reaction- 
diffusion systems. 

6. HIGH-ORDER METHODS FOR SEMILINEAR EQUATION 
WITH SMALL CONSTANT DIFFUSION AND ZERO ADVECTION 

Here we restrict ourselves to the case of d = 1 for simplicity again. 
Consider the Cauchy problem 

(6.1) - + ? a U ?9(t,X,u) = o, t G [to,T), x E R1, 

(6.2) u(T, x) = p(x). 

We assume that the term g(t, x, u) is a uniformly bounded and sufficiently smooth 
function and conditions like (ii) from Section 3 are fulfilled for the solution u(t, x) 
to (6.1)-(6.2). Note that to construct high-order methods we need uniform bound- 
edness of the derivatives of u(t, x) with higher orders than in the assumption (3.8). 
To realize the methods of this section, we can avoid any interpolation. This is 
so because when a = 1, b =_ 0 c = 0 we are able to choose a special space dis- 
cretization. The methods of this section are tested by simulation of the generalized 
KPP-equation with a small parameter (see Section 7.2). 

The probabilistic representation of the solution to (6.1)-(6.2) has the form (see 
(2.1)-(2.3)) 

(6.3) u(t, x) = EQ(p (Xt,x (T)) + Zt,x,o (T)), 

where Xt,x(s) and Zt,x,,(s), s > t, satisfy the system 

(6.4) dX = Edw(s), X(t) = xI 
dZ = g(s, X, u(s, X))ds, Z(t) = z. 

Note that (6.4) is a system of differential equations with small additive noise. 
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6.1. Two-layer methods. For completeness of presentation, let us write down 
the layer methods (2.8) and (3.21) and the second-order layer method from [18] in 
the case of the problem (6.1)-(6.2). 

The explicit layer method (2.8) with error 0(h) has the form 

(6.5) UR (tN, xj) = (P(Xj), 

Ui(tk,Xj) = -U(tk+l,xj +sh1/ ) + 1U(tk+l,xj - Eh2) + hg(tk+l,Xj, ii(tk+l1xj)), 2 ~~~~~2 
x3 = xo + jh12, j = 0, ?1, ?2,... , k = N-1,...,. 

Note that it coincides with the well-known finite-difference scheme under the 
special relation of time and space steps (hx = Eh1/2) in the scheme. 

In the case of the problem (6.1)-(6.2) the explicit layer method (3.21) with error 
O(h2 + &2h) takes the form 

(6.6) U-(tN,xj) = (P(Xj), 

iii1 (tk, Xj) = U(tk+l, Xj) + hg(tk, Xj, i(tk+1, Xj)), 

U(tk,Xj) = U(tk+l,Xj +&h/) + 2U(tk+l,Xj-&h1/2) 

+2 h[g(tk, Xj, U )(tk, Xj)) + 9(tk+1, Xj, U(tk+1, Xj))], 

x; = xo + jEhl/ j = 0, ?1, ?2,. .., k = N-1,..,0 

Using the second-order Runge-Kutta scheme (2.12), the implicit second-order 
layer method for the semilinear parabolic equation with constant diffusion is con- 
structed in [18]. In the case of the problem (6.1)-(6.2) the implicit layer method 
with error 0(h2) has the form 

(6.7) O(tN,xj) = P(Xj), 

UNk, Xj) = -U(tk+l,Xj + /Eh / ) + 2u(tk+l x) + u(tk+l,xj- 3h1 

h h 
+ -g(tk Xj,I U(tk, Xj)) + - 9(tk+1, Xj,i U(tk+1, Xj)) 2 3 

+j29(tk+1,xj + V?h1/2,U(tk?,xJ +U 

+ 129tk+1 Xj 4?hl, U(tk+l, Xj - vf3h/), 
?y-g(tk?liXj 

- 
\/3Eh1 2U(k1x- 

xj =xo + jV3-,hl/, j = 0, ?1,?2, ... ., k = N - 1, N - 2, . .. ,0. 

To solve the algebraic equations obtained at each step of the method (6.7), one 
can use the Newton method or the method of simple iteration. 

Remark 6.1. In the singular case the natural bounds for derivatives of the solution 
to (6.1)-(6.2) have the form 

(6.8) ?i 
U 

K-, t E [to,T], x E R1, O < E < *. 

These bounds are obtained using the change of variables t = t', x = Ex' (cf. Section 
3.4). 
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By the same arguments as in Theorem 3.3 one can prove under (6.8) that the 
errors of both methods (6.5) and (6.6) are estimated as 

|U(tk, X) - U(tk, X) I< Kh, 

where the constant K does not depend on x, k, h, E. 

Nevertheless, the method (6.6) gives better results than (6.5) in our experiments. 
One can explain this by the fact that the constant K of (6.6) is essentially less than 
the K of (6.5). 

Under (6.8) the error of the method (6.7) remains 0(h2). 
Note that in Section 7.2 we present results of testing these methods (instead of 

(6.5) we use a modification of it) on an equation in which g depends on E and the 
derivatives of the solution have other bounds than (6.8) (see Remark 7.1 and other 
details in Section 7.2). 

6.2. Three-layer methods. Here we obtain two three-layer methods. Their one- 
step errors can be estimated by the same arguments as in Lemma 3.1. We do not 
prove their convergence, which requires stability analysis of multi-layer methods. 
We test these methods in our experiments, and they give fairly good results. 

To calculate u(tk+1, x) by a three-layer method, two previous layers are used. So, 
to start simulations we should know u(tN, x) and u(tN_1, x). To simulate u(tN-1, x) 
one can use, e.g., the two-layer method (6.7) with a sufficiently small step. Below 
we consider this layer to be known, and denote +(x) := u(tN-1, x). 

Apply the special Runge-Kutta scheme (2.13) to approximate (6.4): 

(6.9) Xtk,x(tk+1) -X ,(t) =x +h1/2k 

Ztk,X,Z(tk+l) Ztk,X,Z(tk+l) 

Z + - (9(tk, X, U(tk, x)) + 2g(tk+1/2, x, u(tk+1/2, x)) 
6 

+ 2g(tk+1/2, X + Eh /2 k, U(tk+1/2, X + 1/2 k)) 

+ 9(tk+1, X + Eh /2 k, U(tk+l, X + Eh 1/2k))), 

where 6k are i.i.d. variables with the law P(Q = 0) = 2/3, P( - ?vX) = 1/6. 
The implicit method with one-step error O(h5 + E2h3) has the form (to get the 

method we use the scheme (6.9) with the time step 2h) 

(6.10) U (tN, Xj) =P (Xj), U (tN - 1,Xj) = (Xj)) 

ui(tk, xj) =I -(tk+2, x2 + V?h1/ ) + 2i(tk+2, x- ) + 6-2)(tk+2,xJ - 

U~~~+3(tk, X) (k2 Xj+ U(tEhl Xj)+ (tk+2) Xj, + U(tk+2) Xj- /6h 

h 0 

+ g9 (tk, Xj + \/tkhXj 2,9 (tk+1, Xj + / 

+-9(tk+1,xj - 6&h1 /,U(tk+l,Xj - E h 

+hj 9(tk+2,xi + \h lt 2 Xj(tk +2 xjEhl /2 \/' &t ) ) + 9 h 1/2xx 

9 
+ -9 tk2,Xj- v?6&hE h U(tk+2)x X- /6h 
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Let us look at the stability properties of this method in the simple case when u 
and g in (6.1) do not depend on x, i.e., apply the method (6.10) to the ordinary 
differential equation 

du 
(6.11) dt ~~+ g(t, u) = O, t < T, u(T) = wp. dt 

Recall (see, e.g., [10]) that a linear n-step method for (6.11) 

CenUk + Cen-lUk+l + * * + aOUk+n = h (f3ngk + * + 309k+n)v 

9i = 9 (ti, Ui), atn 7& 0, Ia'o I + 11301 > ?, 

is zero-stable (D-stable) if the generating polynomial 

(6.12) anAn + ani, AnV 1 +* + a,o = o 

satisfies the root condition: the roots of (6.12) lie on or within the unit circle, and 
the roots on the unit circle are simple. 

In the case of (6.11) the method (6.10) coincides with the Milne two-step method 
which is of the order 0(h4) and is zero-stable. Its generating polynomial has two 
roots: 1 and -1. As is known [10], the root -1 can be dangerous for some differential 
equations. The method (6.10) has unstable behavior in our numerical tests on the 
generalized KPP-equation with a small parameter, (7.10)-(7.12) (Section 7.2). One 
.can see that the method (6.10) does not preserve the property u < 1 of the problem 
(7.10)-(7.12) that leads to an unstable behavior of the approximate solutions. We 
modify the method (6.10) in the experiments: if O(tk, Xj) > 1, we put U(tk, Xj) = 1. 
Since locally, in a single step, the resulting difference 0 < U-(tk, xj) - 1 is not greater 
than the one-step error of this method, this modification does not change the one- 
step accuracy order of the method. The modified method turned out to work fairly 
well if applied to the generalized KPP-equation. However, the modification is based 
on knowledge of the properties of the solution, and it may be difficult to find such 
a modification for another problem. Fortunately, we are able to approximate the 
system (6.4) by another weak scheme and obtain a method for (6.1)-(6.2) with 
better stability properties in the sense considered above but with the one-step error 
of lower order (see the method (6.13) below). Let us note that it is possible to reach 
both the same one-step accuracy O(h5 + &2h3) and the better stability properties 
by a four-layer method. 

Approximate (6.4) by the special scheme with one-step order O(h4 + &2h3) 

Xtk,X(tk+l)Xtk,x(tk+) = X + /2k 

Ztk,X,z (tk+1) -- Ztk,X,z (tk+1) = Z + - (5g(tk, X, U(tk, X)) + g(tk+1, X, U(tk+l X)) 12 

+7g(tk+1, X + Eh /2 k, U(tk+l, X + Ehl/2 

-9(tk+2, X + Ehl /2k, U(tk+2, X + Eh 1/2k))) 

where the (k are i.i.d. variables with the law P(Q = 0) = 2/3, P(Q = ?v?) = 1/6. 
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The three-layer implicit method with one-step error O(h4 + ?2h3) has the form 

(6.13) i(tN,Xj) =P(Xj), U(tN1,xJ) = 

tl(tk,Xj)= -Uk+1,Xj + /Ehl/2) + 2(tk+lXj) + (tk+l,Xj- Eh 
6 3 6~ 

5h 17h 
+ 19(tk,Xj,U(t,Xj)) + 36 9(tk+1, Xj, U(tk+l, Xj)) 

+ 79(tk+l, Xj + /3&hl 2,U(tk+l, Xj + 3Eh 

+7g (tk+1 - Xj- &h1/2, U(tk+1, - /2 

h h f1/2/2/2) 
- 9 (tk+2, Xj + f3-hl2 ~U(tk+2, Xj + vf3-hl/ 

-h g(tk+2, xj, Ui(tk+2, xj)) - 729(tk+2, Xj- \/Eh 1/2, ) U(tk+2, Xj - 3Eh1/)) 

xj = xo + j\ &h1/2, j = 0,?I1,? 2,.. ., k=N-2,N-3, ..., 0. 

For (6.11) this method coincides with one of the implicit two-step Adams meth- 
ods of order 0(h3), and the roots of its generating polynomial are 1 and 0. One can 
expect that in the case of the problem (6.1)-(6.2) the method (6.13) also possesses 
better stability properties than (6.10). In our numerical tests on the generalized 
KPP-equation with a small parameter (Section 7.2) the method (6.13) has stable 
behavior. 

To solve the algebraic equations obtained at each step of the methods (6.10) and 
(6.13), one can use the Newton method or the method of simple iteration. 

Remark 6.2. The methods of this section can be extended for problems of a higher 
dimension or for systems of reaction-diffusion equations. Additionally using some 
other weak approximations to SDE with small additive noise, new layer methods 
can be constructed. For instance, three- and four-layer methods with the one-step 
error O(h5 + ?2h2) can be obtained. It is also not difficult to get an implicit four- 
layer method with the one-step error O(h5 + ?2h3) for (6.1)-(6.2) possessing good 
stability properties in the above sense, or an explicit four-layer method with the 
one-step error O(h4 + &2h3), and so on. 

Remark 6.3. In the preprint [20] another special layer method for some nonlinear 
problems is constructed. To approximate SDE, it attracts the exact simulation of 
the Brownian motion instead of the weak schemes used in Sections 2-6. In [17] a 
few methods with exact simulation of some components of SDE are proposed for 
linear problems. It was shown that these methods are preferable to weak schemes 
in some situations. In the nonlinear case layer methods, using the exact simulation 
of the Brownian motion, possess some preferable properties as well. 

7. NUMERICAL TESTS 

We start with two short digressions of a general nature. 
In the previous sections we dealt with semilinear parabolic equations with neg- 

ative direction of time t the equations are considered for t < T and the "initial" 
conditions are given at t = T. This form of equation is suitable for the probabilistic 
approach which we use to construct numerical methods. Of course, our methods 
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are adaptable to semilinear parabolic equations with positive direction of time, and 
this adaptation is particularly easy in the autonomous case. 

Consider the Cauchy problem for autonomous semilinear parabolic equations 
with positive direction of time 

(7.1 Ou 2 2 OX )0U + 2CX U t 
9 

(7t1) (X,)2? + (b(x,u) 2c(X,u))0+ g(x,u), t > O, x E R, 

(7.2) u(0, x) = (p(X). 

Note that if we substitute the solution u(t, x) of this problem in the coefficients 
a, b, c, and g, the equation (7.1) becomes nonautonomous. Nevertheless, it is 
not difficult to obtain numerical procedures with positive direction of time which 
correspond to the algorithms given in the previous sections. In our numerical tests 
we use algorithms with positive direction of time (see, e.g., (7.8), (7.9) below). 

We noted in Remark 4.1 that the algorithms based on cubic interpolattion give 
quite good results. We use the advantage of the cubic interpolation in our numerical 
tests on the Burgers equation. Let us recall that a sufficiently smooth function f (x), 
x E R1, can be interpolated by cubic interpolation as 

3 

(7.3) f (x) f(x) = Z j i,(x)f(Xj+i), Xj+1 < X < Xj+2, 
i=O 

,i7(x) = ]7 
x-Xj+m 

m=O,m?i Xj+i - Xj+m 

where xj = xo + j . hx, xo E R1, j = 0, ?1, ?2, . , and hx is a positive number. 
The error of the cubic interpolation (7.3) is estimated by 

3 094 U4 
If(x)- f(x)I < 128 m 41* hX4 Xj+1 < x <X Xj+2 

Recall (see Theorem 4.1) that the algorithm (4.1), based on the layer method 
(3.21) and on linear interpolation, has error estimated by O(h2+&2h) provided hx = 

min(h3/2, h). One can expect that under assumptions (i) and (ii) from Section 3 
the algorithm based on the layer method (3.21) and on the cubic interpolation (7.3) 
can achieve the same accuracy O(h2 + &2h) with hx taken equal to min(h3/4, h) 
only. Our numerical tests on the Burgers equation support this supposition. See 
the theoretical explanations in [18] as well. 

As mentioned in the Introduction, all the methods have been tested through 
computer experiments. Some of them are presented below. 

7.1. The Burgers equation with small viscosity. The one-dimensional Burg- 
ers equation with small viscosity has the form 

9u _ ~2 092 U Ou 
(7.4) U = 2 -u0, t>O, xER1, 

(7.5) u(0,x) = p(x). 
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By means of the Cole-Hopf transformation, one can find the explicit solution of 
the problem (7.4)-(7.5): 

1y 
f? K(t, x, y) p(y) exp(- 2 f0 o(()d )dy 

u(t, x) 
f? K(t, x, y) exp(-I fY' wp()d )dy 

K(t, x,y) 
1 

exp(-( 
X Y)) 

K(t,x,y) f2i-7r2t 2E2t 

Let us take the initial condition (p(x) of the form 

(c x < 10, 

(7.6) (P(x) ={A(x), lo < x < lo + 1, 

td) x > lo + 1, 

where c, d, lo, I are numbers, c > d, I > 0, A(x) is a bounded measurable function, 
and d < A(x) < c. 

Recall some theoretical facts concerning the problem (7.4)-(7.5), (7.6) (the details 
are given, e.g., in [9, 28]). 

The solution u(t, x) to (7.4)-(7.5), (7.6) is uniformly bounded: 

d < u(t, x) < c, x E Rl, O<t, O<g<g* 

Let the initial condition p(x) be a sufficiently smooth function. Introduce the 
time moment T such that the solution of the hyperbolic problem obtained from 
(7.4)-(7.5), (7.6) for E = 0 is smooth at t < T and discontinuous at t > T. The 
solution u(t, x) to (7.4)-(7.5), (7.6) is regular for t < t* < T 

Oi+&xJ | aio j (t, x)| < K, x ER', O < t<t*, O <E?< 

If t > T, then the solution is singular in an interval (x*(t), x*(t)) with width 

ti+jU XE (X*(t),x* (t)), t>T O<) <g, 

ai+ 
jU 

(tX)| K, z z(t), x (t)), T, O 0 

In our experiments we take A(x) equal to 

(7.7) A(x) = a -b sin-, 

M>O, b>O, and c=a+b, d=a-b, I=,u, 1=- _ 
2 

For this A(x) the moment T can easily be found: T = u/irb. 
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We compare the behavior of two algorithms. The first one is based on the layer 
method (3.21) with the cubic interpolation (7.3). In the case of the problem (7.4)- 
(7.5) it has the following form: 

(7.8) u(0,(x) = (p(x), 

* U(tk+l,Xj) = -U(tk,Xj - hu(tk, Xj- hu(tk, xj)) + 
?h12) 

+ dU(tk, Xj- hU(tk, Xj - hu-(tk, xj)) -hl 

3 

U(tk, X) = ZDj,i(X)U-(tk, Xj+i), Xj+1 < X < Xj+2, 

i=O 

3 

(x)= X - Xj+m 

m=O,m?i X - .Xj+m 

j = 0, ?1, ?2,... , k = 0, ...,N-1, 

where xj = xo + j hx. 
The second algorithm is based on the layer method (2.8) proposed in [18] and 

on the cubic interpolation (7.3): 

(7.9) u(0,x) = (p(x), 

U7(tk+l, Xj) = (tk, Xj -hU(tk, Xj) + &h1/2) + 2 (tk, Xj - ht(tk, Xj)- / 

3 

ui(tk, X) X)= E4j,i(x)U(tk, Xj+i), Xj+1 < X < Xj+2, 

i=O 

3 

4u,7(x)= ]7 x-Xj+m 

m=O,m?i Xj+' 
- 

Xj+m 

j = 0,?1, ?2,..., k=O,... ,N- 1. 

Table 1 gives the results of simulation of the problem (7.4)-(7.5) with S(x) from 
(7.6), (7.7) in the case of the regular solution. In this case assumptions (i) and (ii) 
from Section 3 are fulfilled, and the algorithm (7.8) has error O(h2 + c2h) while 
(7.9) has error 0(h). The value of h. is taken equal to h3/4. We present the errors 
of the approximate solutions u- in the discrete Chebyshev norm and in the 11-norm: 

errC(t) = max |u(t, xi) - u(t, xi) | 
Xi 

errl(t) = 3 |u(t, xi) - u(t, xi) | hx. 

One can infer from Table 1 that the proposed special algorithm (7.8) with error 
0(h2 + c2h) requires less computational effort than the algorithm (7.9) with error 
0(h), and that the experimental data conform to the orders of accuracy of the 
algorithms given by the theoretical results. 

To find the solution u(t, x) to the problem (7.4)-(7.5), (7.6) for t > T, when the 
solution is singular, we realize the following numerical procedure: we simulate the 
problem by the algorithms (7.8) and (7.9) with a sufficiently big time step h and 
with hx = h3/4 up to the time moment t*. < T; then we change the time step h to 
a smaller one h*, take hx = h*, and continue the simulations. 
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TABLE 1. The Burgers equation (regular solution). Dependence 
of the errors errc(t*) and errl(t*) on h and E for the algorithms 
(7.8) and (7.9) when a = b = 0.5, ,u = 8, and t* = 4 (T - 5.09). 

E h algorithm (7.8) algorithm (7.9) 
errc(t*) err1 (t*) errc(t*) err (t*) 

0.3 0.1351 10-1 0.1531 10-1 0.1130 0.1397 
0.3 0.1 0.2146 10-2 0.3347- 10-2 0.3978 10-1 0.4628- 10-1 

0.01 0.2295 10-3 0.3874 10-3 0.4221 10-2 0.4799 10-2 
0.001 0.2265- 10-4 0.3947 10-4 0.4244 10-3 0.4814 10-3 

0.3 0.2325- 10-1 0.2051 10-1 0.1539 0.1519 
0.1 0.4255. 10-2 0.2287 10-2 0.6084 10-1 0.5007- 10-1 

0.1 0.03 0.3489 10-3 0.2396- 10-3 0.2029- 10-1 0.1553- 10-1 
0.01 0.4444 10-4 0.5442 10-4 0.6751 10-2 0.5169- 10-2 
0.001 0.5529 10-5 0.6374- 10-5 0.6806 10-3 0.5189 10-3 

TABLE 2. The Burgers equation (singular solution). The errors 
errc(t) and err' (t) for t = 8 (T - 5.09). Other parameter values 
are the same as in Table 1. The time steps h and h* are used when 
t < t* and t > t* correspondingly. 

E h h* algorithm (7.8) algorithm (7.9) 
_errc(t) err, (t) errc(t) err' (t) 

0.1 0.01 0.6322 10-2 0.2713 10-2 0.1693 0.6555 10-1 
0.3 0.01 0.001 0.4036 10-3 0.2482 10-3 0.1771 . 10-1 0.6782. 10-2 

0.001 0.0001 0.5977 1i0-4 0.3760 10-4 0.1776 10-2 0.6931 10-3 

0.1 0.001 0.5553 10-1 0.2351 10-2 > 0.5 0.6594 10-1 
0.1 0.03 0.001 0.1219- 10-1 0.4699 10-3 > 0.5 0.3189. 10-1 

0.0001 0.3955- 10-2 0.1718 10-3 0.4029 0.1716. 10-1 
0.01 0.0001 0.7047 10-3 0.3007- 10-4 0.1687 0.6828 10-2 
0.001 0.0001 0.4139 10-3 0.2312 10-4 0.5461 - 101 0.2185. 10-2 

Table 2 gives the results of simulation of the problem (7.4)-(7.5) with p(x) from 
(7.6), (7.7) when t > T. One can see that in the singular case the beha4ior of the 
algorithm (7.8) is also better than the behavior of (7.9). 

In connection with this example, see the numerical experiments in [1] and [18] 
as well. 

7.2. The generalized KPP-equation with a small parameter. Consider the 
problem 

~ 2 &2u 

(7.10) AtU 2 ux (,U;?), t> 0, x E R 

1, x < 0, 

(7.11) u(0,x) = x(x) = x = 0, 

o x x>0, 
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and take 

(7.12) g(x, u; c) = -2c(x)u(l - U), 

c(x) = c +-arctg ae(x-b). 
7T 

Here E > 0 is a small parameter, ae > 0 is a big number, c, a, and b are positive 
constants, and a/2 < c < 3a/2. 

The problem (7.10)-(7.12) is a generalization of the KPP-equation. The theoreti- 
b l2-a 

cal results for this problem obtained in [5] give the following. For t < To I + 0 
the wave propagates to the right of the domain Go = {x < 0} with the velocity 
V2c -a, "taking no notice" of the fact that after x = b the coefficient c(x) takes a 

a 
larger value c + 2. But at the time To, a new "source" arises at the point x = b, 
away from which the front starts propagating in both directions: to the left with a 
velocity close to V2c -a and to the right with a velocity close to 2c+ a. 

Figure 1, obtained in our numerical experiments, demonstrates this phenomenon. 
Under the parameters used here (see the figure caption), To - 5.65. As soon as the 
time t is close to To, the velocity of the new front to the right is greater than 
/c+a - 2.06 (see Figures Ic and Id); and with an increase of time the velocity 

tends to 2c + a (see Figures le and If). One can explain this by the fact that 
when the new "source" arises the value of the solution u before the front is greater 
than the corresponding value of u when the shape of the wave takes its limit form. 

Let us note that for our values of the parameters (e = 0.1; see the caption to 
Figure 1) 

min u(5.75, x) 1 0-71 
-oo<x<b 

while there is already the new front at x = b (see Figure ic). So, the "channel" 
through which the new "source" is initialized is very narrow. This fact has to be 
taken into account for realizing numerical procedures on a computer. For instance, 
when E = 0.04 

min u- (5.75, x) 
-oo<x<b 

which is less than the smallest positive number (- 10-308) realizable by many 
compilers. To observe the phenomenon in this case, one has to compose a special 
numerical procedure or use a special compiler. 

An additional confirmation of the high sensitivity of our model is given, for 
instance, by the following experiment. If we put u(0, x) = ,u for x > 0 with a small 
positive ,u, e.g. 10-15, in the initial condition (7.11) and take the other parameters 
as in Figure 1, the new "source" arises at a moment t < 1. 

Here we compare five numerical methods: the methods (6.6), (6.7), (6.10), (6.13) 
given in Section 6 (of course, we take their versions adapted to problems with 
positive direction of time) and the first-order method written below. The results 
of the numerical tests are shown in Figures 2 and 3. 
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FIGURE 1. The KPP-equation. Evolution of the solution u(t, x) to 
problem (7.10)-(7.12) for e = 0.1, c = 1.125, a = 2, b = 6, a = 150 
simulated by the method (6.13) with h = 0.0001. 

The first-order method is 

(7.13) u (0, xj) = X_(xj), 

U(tk+1,Xj) = 2i(tk, Xj + Eh /2) + Uii(tk,Xj -Eh1/2) 

2 (9(Xj-1, U(tk, Xj-1)) + g(Xj+1, ii(tk, Xj+l)))) 

xi = xo + jeh2, j = 0, ?1,.. ., k = 0, .. ., N-1. 

It can be checked that for a sufficiently small h this method preserves the 
monotonicity property of the solution. The first-order method (6.5), which has 
hg(xj, iU(tk, Xj)) instead of h(g(xj-., Ui(tk, Xj-1)) +9(Xj+l, iU(tk, xj+i)))/2, does not 
preserve the monotonicity property and has unstable behavior for this problem. 
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0.4- 

0.2- 

0 
6.4 6.8 x 

FIGURE 2. The KPP-equation (new source appearance). Com- 
parison of the methods. The solid curve is simulated by (6.7) and 
(6.13) with h = 0.0001, and it visually coincides with the exact 
solution. The curves 1, 2 are simulated by (7.13) and (6.6) with 
h = 0.0001; the curves 3, 4 by (6.7) and (6.13) with h = 0.001. 
Here e = 0.2, t = 5.8, and the other parameter values are the same 
as in Figure 1. 

The algebraic equations arising in the implementation of the methods (6.7), 
(6.10), and (6.13) at each step are quadratic ones and are solved exactly. The 
results of testing the three-layer method (6.10) are discussed in Section 6.2. 

u 

.2 

0.5- 

2 4 6 x 

FIGURE 3. The KPP-equation. Comparison of the methods. The 
curve 3 is simulated by (6.7) and (6.13) with h = 0.0005 and 
h = 0.0001, and it visually coincides with the exact solution. The 
curves 1,2 are simulated by (7.13) and (6.6) with h = 0.0001. Here 
t = 5.75, and the other parameter values are the same as in Fig- 
ure 1. 
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Remark 7.1. Derivatives of the solution to (7.10)-(7.11) can be estimated as 

(7.14) |att+Xj |u- <2(i?j)' t E [to,T], x E R1, O<E<?*. 

By the same arguments as in Theorem 3.3 one can prove that, under (6.8), for a 
sufficiently small h/E2 the errors of both methods (6.5) and (6.6) are estimated as 

h 
|U(tk, X) - U(tk, X)| < K4, 

and the error of the method (6.7) is estimated as 

|U(tk, X) - U(tk, X)| < K-6 - 

where the constant K does not depend on x, k, h, E. 
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